Fred Hoyle

Sir Fred Hoyle

Born 24 June 1915(1915-06-24)
Gilstead, Bingley, West Yorkshire, England
Died 20 August 2001(2001-08-20) (aged 86)
Bournemouth, England
Residence United Kingdom
Nationality British
Fields Astronomy
Institutions Institute of Astronomy, Cambridge
Alma mater Emmanuel College, Cambridge
Academic advisors Rudolf Peierls
Maurice Pryce
Philip Worsley Wood
Doctoral students John Moffat
Chandra Wickramasinghe
Cyril Domb
Jayant Narlikar
Other notable students Paul C. W. Davies
Known for Coining the phrase 'Big Bang'
Hoyle's fallacy
Hoyle-Narlikar theory
Steady state theory
Triple-alpha process
Panspermia
Influenced Jocelyn Bell Burnell
Notable awards Mayhew Prize (1936)
Smith's Prize (1938)
RAS Gold Medal (1968)
Bruce Medal (1970)
Royal Medal (1974)
Klumpke-Roberts Award (1977)
Crafoord Prize (1997)
Notes
He is the father of Geoffrey Hoyle and Elizabeth Butler.

Sir Fred Hoyle FRS (24 June 1915 – 20 August 2001) was an English astronomer noted primarily for his contribution to the theory of stellar nucleosynthesis and his often controversial stance on other cosmological and scientific matters—in particular his rejection of the "Big Bang" theory, a term originally coined by him as a jocular, perhaps disparaging, name for the theory which was the main rival to his own. In addition to his work as an astronomer, Hoyle was a writer of science fiction, including a number of books co-written with his son Geoffrey Hoyle. Hoyle spent most of his working life at the Institute of Astronomy at Cambridge and served as its director for a number of years. He died in Bournemouth, England, after a series of strokes.

Contents

Early life

Hoyle was born in Gilstead, West Yorkshire, England,[1] near Bradford, where his father, Ben Hoyle, worked in the wool trade. His mother, Mabel Pickard, had studied music at the Royal College of Music in London. Hoyle was educated at Bingley Grammar School and read mathematics at Emmanuel College, Cambridge.[2]

Contribution to cosmology

An early paper of Hoyle's made an interesting use of the anthropic principle. In trying to work out the routes of stellar nucleosynthesis, he observed that one particular nuclear reaction, the triple-alpha process, which generates carbon, would require the carbon nucleus to have a very specific energy for it to work. The large amount of carbon in the universe, which makes it possible for carbon-based life-forms (e.g. humans) to exist, demonstrated that this nuclear reaction must work. Based on this notion, he made a prediction of the energy levels in the carbon nucleus that was later borne out by experiment.

However, those energy levels, while needed in order to produce carbon in large quantities, were statistically very unlikely. Hoyle later wrote:

Would you not say to yourself, "Some super-calculating intellect must have designed the properties of the carbon atom, otherwise the chance of my finding such an atom through the blind forces of nature would be utterly minuscule." Of course you would . . . A common sense interpretation of the facts suggests that a superintellect has monkeyed with physics, as well as with chemistry and biology, and that there are no blind forces worth speaking about in nature. The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question.[3]

Hoyle, an atheist until that time, said that this suggestion of a guiding hand left him "greatly shaken." Consequently, he began to believe in a guiding force in the universe, which led him to a belief in panspermia.[4] Those who advocate the intelligent design hypothesis sometimes cite Hoyle's work in this area to support the claim that the universe was fine tuned in order to allow intelligent life to be possible. Alfred Russel of the Uncommon Descent community has even gone so far as labeling Hoyle "an atheist for ID".[5] Some of Hoyle's thoughts in this area have been referred to as "Hoyle's fallacy" by detractors.

His co-worker William Alfred Fowler eventually won the Nobel Prize for Physics in 1983 (with Subrahmanyan Chandrasekhar), but for some reason Hoyle’s original contribution was overlooked, and many were surprised that such a notable astronomer missed out. Fowler himself in an autobiographical sketch affirmed Hoyle’s pioneering efforts:

The concept of nucleosynthesis in stars was first established by Hoyle in 1946. This provided a way to explain the existence of elements heavier than helium in the universe, basically by showing that critical elements such as carbon could be generated in stars and then incorporated in other stars and planets when that star "dies". The new stars formed now start off with these heavier elements and even heavier elements are formed from them. Hoyle theorized that other rarer elements could be explained by supernovas, the giant explosions which occasionally occur throughout the universe, whose temperatures and pressures would be required to create such elements.

Rejection of the Big Bang

While having no argument with the Lemaître theory (later confirmed by Edwin Hubble's observations) that the universe was expanding, Hoyle disagreed on its interpretation. He found the idea that the universe had a beginning to be philosophically troubling, as many argued that a beginning implies a cause, and thus a creator (see Kalam cosmological argument).[6] Instead, Hoyle, along with Thomas Gold and Hermann Bondi (with whom he had worked on radar in World War II), argued for the universe as being in a "steady state". The theory tried to explain how the universe could be eternal and essentially unchanging while still having the galaxies we observe moving away from each other. The theory hinged on the creation of matter between galaxies over time, so that even though galaxies get further apart, new ones that develop between them fill the space they leave. The resulting universe is in a "steady state" in the same manner that a flowing river is - the individual water molecules are moving away but the overall river remains the same.

The theory was one alternative to the Big Bang which agreed with key observations of the day, namely Hubble's red shift observations, and Hoyle was a strong critic of the Big Bang. Ironically, he is responsible for coining the term "Big Bang" on BBC radio's Third Programme broadcast at 1830 GMT on 28 March 1949. It is popularly reported that Hoyle intended this to be pejorative, but the script from which he read aloud clearly shows that he intended the expression to help his listeners.[7] In addition, Hoyle explicitly denied that he was being insulting and said it was just a striking image meant to emphasize the difference between the two theories for radio listeners.[8]

Hoyle, unlike Gold and Bondi, offered an explanation for the appearance of new matter by postulating the existence of what he dubbed the "creation field", or just the "C-field", which had negative pressure in order to be consistent with the conservation of energy and drive the expansion of the universe. These features of the C-field anticipated the later development of cosmic inflation. They jointly argued that continuous creation was no more inexplicable than the appearance of the entire universe from nothing, although it had to be done on a regular basis. In the end, mounting observational evidence convinced most cosmologists that the steady state model was incorrect and that the Big Bang was the theory that agreed best with observations, although Hoyle continued to support and develop his theory. In 1993, in an attempt to explain some of the evidence against the steady state theory, he presented a modified version called "quasi-steady state cosmology" (QSS), but the theory is not widely accepted.

The evidence that resulted in the Big Bang's victory over the steady state model, at least in the minds of most cosmologists, included the discovery of the cosmic microwave background radiation in the 1960s, the distribution of "young galaxies" and quasars throughout the Universe in the 1980s, a more consistent age estimate of the universe and most recently the observations of the COBE satellite in the 1990s and the Wilkinson Microwave Anisotropy Probe launched in 2001, which showed unevenness in the microwave background in the early universe, which corresponds to currently observed distributions of galaxies.

Media appearances and scientific honours

Hoyle appeared in a series of radio talks on astronomy for the BBC in the 1950s; these were collected in the book The Nature of the Universe, and he went on to write a number of other popular science books. In 1957 he was elected a Fellow of the Royal Society, and he was knighted in 1972. He was jointly awarded the Crafoord Prize by the Royal Swedish Academy of Sciences.

In the play Sur la route de Montalcino, the character of Fred Hoyle confronts Georges Lemaître on a fictional journey to the Vatican in 1957.[9]

Rejection of chemical evolution

In his later years, Hoyle became a staunch critic of theories of chemical evolution used to explain the naturalistic origin of life. With Chandra Wickramasinghe, Hoyle promoted the theory that life evolved in space, spreading through the universe via panspermia, and that evolution on earth is driven by a steady influx of viruses arriving via comets. In 1982, Hoyle presented Evolution from Space for the Royal Institution's Omni Lecture. After considering what he thought of as a very remote probability of evolution he concluded:

If one proceeds directly and straightforwardly in this matter, without being deflected by a fear of incurring the wrath of scientific opinion, one arrives at the conclusion that biomaterials with their amazing measure or order must be the outcome of intelligent design. No other possibility I have been able to think of...[10]

Published in his 1982/1984 books Evolution from Space (co-authored with Chandra Wickramasinghe), Hoyle calculated that the chance of obtaining the required set of enzymes for even the simplest living cell was one in 1040,000. Since the number of atoms in the known universe is infinitesimally tiny by comparison (1080), he argued that even a whole universe full of primordial soup would grant little chance to evolutionary processes. He claimed:

The notion that not only the biopolymer but the operating program of a living cell could be arrived at by chance in a primordial organic soup here on the Earth is evidently nonsense of a high order.

Hoyle compared the random emergence of even the simplest cell to the likelihood that "a tornado sweeping through a junk-yard might assemble a Boeing 747 from the materials therein." Hoyle also compared the chance of obtaining even a single functioning protein by chance combination of amino acids to a solar system full of blind men solving Rubik's Cube simultaneously.[11] (See the watchmaker analogy for similar reasoning.) Hoyle's statements and this line of reasoning (at various levels of accuracy) appears frequently in support of intelligent design. Mainstream evolutionary biology rejects Hoyle's interpretation of statistics, and supporters of modern evolutionary theory, such as Richard Dawkins, refer to this as "Hoyle's fallacy".

Other controversies

Further occasions on which Hoyle aroused controversy included his questioning the authenticity of fossil Archaeopteryx and his condemnation of the failure to include Jocelyn Bell in the Nobel Prize award recognizing the development of radio interferometry and its role in the discovery of pulsars.

The most important of Hoyle's contributions was probably his work on nucleosynthesis: the idea that the chemical elements were synthesized from primordial hydrogen and helium in stars. Many thought it unfair that a Nobel prize was awarded to his collaborator William A Fowler, but Hoyle himself was excluded from the prize.

Hoyle had a famously heated argument with Martin Ryle of the Cavendish Radio Astronomy Group about Hoyle's steady state theory, which somewhat restricted collaboration between the Cavendish group and the Cambridge Institute of Astronomy during the 1960s.

As did Thomas Gold, Hoyle defended primordial origin of natural hydrocarbons (oil and natural gas). "The suggestion that petroleum might have arisen from some transformation of squashed fish or biological detritus is surely the silliest notion to have been entertained by substantial numbers of persons over an extended period of time." Fred Hoyle, 1982.

Honours

Awards

Named after him

Science Fiction works

Hoyle also wrote science fiction. In his first novel, The Black Cloud, most intelligent life in the universe takes the form of interstellar gas clouds; they are surprised to learn that intelligent life can also form on planets. He wrote a television series, A for Andromeda, which was also published as a novel. His play Rockets in Ursa Major had a professional production at the Mermaid Theatre in 1962.

Most of these are independent of each other. Andromeda Breakthrough is a sequel to A for Andromeda and Into Deepest Space is a sequel to Rockets in Ursa Major. The four Ladybird Books are intended for children.

Non-fiction works

Notes

  1. "Sir Fred Hoyle"
  2. Moore, Patrick (January 2009). "Hoyle, Sir Fred (1915–2001)". Oxford Dictionary of National Biography. Oxford University Press. http://www.oxforddnb.com/view/article/76123. Retrieved 2009-08-10.  (Subscription required)
  3. Fred Hoyle, "The Universe: Past and Present Reflections." Engineering and Science, November, 1981. pp. 8–12
  4. Gregg Easterbrook. Was Life Begun by Chance? Not a Chance. Beliefnet.com. Retrieved 22 September 2006.
  5. Alfred Russel. Fred Hoyle - An Atheist for ID. Uncommon Descent. Retrieved 26 July 2010.
  6. Quentin Smith, A Big Bang Cosmological Argument For God's Nonexistence. Faith and Philosophy. April 1992 (Volume 9, No. 2, pp. 217–237
  7. Mitton, Simon, Fred Hoyle a life in science", p. 127, Aurum Press, 2005.
  8. Croswell, Ken, The Alchemy of the Heavens, chapter 9, Anchor Books, 1995.
  9. Jean-François Viot, Sur la route de Montalcino, 2008. Play: Atelier Jean Vilar, 2009.
  10. Hoyle, Fred, Evolution from Space, Omni Lecture, Royal Institution, London, 12 January 1982; Evolution from Space (1982) pp. 27–28 ISBN 0894900838; Evolution from Space: A Theory of Cosmic Creationism (1984) ISBN 0671492632
  11. Genetic Algorithms and Evolutionary Computation at the talkorigins Archive
  12. Indian scientists discover three new species of bacteria. 17 March 2009. The Indian Express.
  13. Google Books
  14. Scribd.com

References

Further reading

External links